Accumulation Pattern Recognition
The Whale Detection System implements sophisticated algorithms for identifying strategic accumulation behaviors utilizing advanced pattern recognition methodologies. The system processes on-chain data through multiple analysis layers for comprehensive whale activity detection.
Detection Parameters
Copy WHALE_THRESHOLDS = {
'min_whale_size_usd': 50000,
'analysis_window': 24 * 60 * 60, # 24 hours
'update_interval': 60, # seconds
'confidence_threshold': 0.75
}
Pattern Recognition Implementation
Copy class WhalePatternRecognizer:
def __init__(
self,
rpc_client: AsyncClient,
min_whale_size_usd: float = 50000,
analysis_window: int = 24 * 60 * 60,
update_interval: int = 60,
confidence_threshold: float = 0.75
):
self.thresholds = {
'stealth_accumulation': {
'min_transactions': 5,
'max_size_ratio': 0.1,
'time_window': 3600
},
'distribution': {
'min_transactions': 10,
'min_unique_receivers': 5,
'time_window': 7200
},
'wash_trading': {
'min_cycle_length': 3,
'max_time_between': 300,
'min_volume': 1000
}
}
Distribution Phase Analysis
The system implements sophisticated metrics for distribution detection:
Analysis Metrics
Copy DISTRIBUTION_METRICS = {
'volume_threshold': 0.05, # 5% of total supply
'time_window': 7200, # 2 hours
'receiver_diversity': 0.7, # Minimum unique receiver ratio
'volume_distribution': {
'min_transactions': 10,
'max_size_variance': 0.3
}
}
Stealth Movement Detection
Implementation of sophisticated algorithms for detecting concealed accumulation:
Copy async def _detect_stealth_accumulation(
self,
token_address: str
) -> List[WhalePattern]:
"""Detect stealth accumulation patterns.
Args:
token_address: Token contract address
Returns:
List of detected whale patterns
"""
patterns = []
wallet_transactions = self._group_transactions_by_wallet(
token_address,
self.thresholds['stealth_accumulation']['time_window']
)
for wallet_address, transactions in wallet_transactions.items():
if self._is_stealth_pattern(
transactions,
self.thresholds['stealth_accumulation']
):
pattern = WhalePattern(
pattern_type=WhaleActivityType.STEALTH_ACCUMULATION,
confidence_score=self._calculate_stealth_confidence(
transactions
),
risk_score=self._calculate_pattern_risk(
WhaleActivityType.STEALTH_ACCUMULATION,
transactions
)
)
patterns.append(pattern)
return patterns
Performance Optimization
Resource Management
Copy Resource Allocation:
Memory Footprint: 4GB per instance
CPU Utilization: 40-60% optimal
Network Bandwidth: 50Mbps sustained
Processing Metrics:
Transaction Analysis: <100ms
Pattern Detection: <200ms
Alert Generation: <50ms
Caching Strategy
Copy CACHE_CONFIG = {
'wallet_data': {
'ttl': 300, # 5 minutes
'max_size': 5000 # entries
},
'pattern_data': {
'ttl': 600, # 10 minutes
'max_size': 1000 # entries
},
'metrics': {
'ttl': 60, # 1 minute
'max_size': 10000 # entries
}
}
System Monitoring
The engine exposes comprehensive metrics through standardized endpoints:
Copy Prometheus Metrics:
- whale_detection_latency_seconds
- pattern_recognition_duration
- wallet_analysis_queue_size
- memory_utilization_bytes
- cache_hit_ratio
Alert Configurations:
- PatternDetectionDelay: >500ms
- HighMemoryUsage: >85% utilization
- ProcessingQueueOverflow: >1000 pending
- ErrorRateHigh: >2% error rate
Error Handling
Copy ERROR_HANDLING = {
'max_retries': 3,
'backoff_factor': 2,
'timeout': 30,
'circuit_breaker': {
'failure_threshold': 5,
'reset_timeout': 60,
'half_open_timeout': 30
}
}
The system implements sophisticated error recovery mechanisms with exponential backoff strategies and circuit breakers to prevent cascade failures during high-load scenarios.