V. Advanced Usage Scenarios
Custom Integration Patterns
The Cazor system supports sophisticated integration patterns for advanced use cases and custom implementations.
Webhook Integration
WEBHOOK_CONFIG = {
'retry': {
'max_attempts': 3,
'initial_delay': 5,
'max_delay': 300
},
'batch': {
'size': 100,
'timeout': 30
},
'endpoints': {
'alerts': {
'url_template': 'https://api.example.com/webhook/alerts',
'secret_header': 'X-Webhook-Secret'
}
}
}
Custom Model Integration
class CustomModelIntegrator:
def __init__(
self,
model_path: str,
inference_timeout: int = 30,
batch_size: int = 32
):
self.model = self._load_custom_model(model_path)
self.inference_queue = asyncio.Queue()
self.processing_tasks = set()
async def process_predictions(
self,
data: Dict[str, Any]
) -> Dict[str, float]:
"""Process custom model predictions."""
try:
normalized_data = self._normalize_input(data)
predictions = await self._run_inference(normalized_data)
return self._post_process_predictions(predictions)
except Exception as e:
logger.error(f"Prediction error: {e}")
raise
Extension Development
Plugin Architecture
from abc import ABC, abstractmethod
class CAZORPlugin(ABC):
@abstractmethod
async def initialize(self) -> None:
"""Initialize plugin resources."""
pass
@abstractmethod
async def process_event(
self,
event: Dict[str, Any]
) -> Optional[Dict[str, Any]]:
"""Process system events."""
pass
@abstractmethod
async def cleanup(self) -> None:
"""Cleanup plugin resources."""
pass
Custom Data Source Integration
class CustomDataSource:
def __init__(
self,
connection_params: Dict[str, Any],
cache_config: Optional[Dict] = None
):
self.connection = self._establish_connection(connection_params)
self.cache = self._initialize_cache(cache_config)
async def fetch_data(
self,
query_params: Dict[str, Any]
) -> AsyncGenerator[Dict[str, Any], None]:
"""Fetch data from custom source."""
async for raw_data in self._stream_data(query_params):
processed_data = await self._process_raw_data(raw_data)
if processed_data:
yield processed_data
Performance Optimization
Memory Management
MEMORY_CONFIG = {
'cache_size': '4GB',
'max_batch_size': 1000,
'gc_interval': 300,
'memory_limit': '8GB',
'swap_threshold': '6GB'
}
Query Optimization
-- Optimized query for time-series data
CREATE MATERIALIZED VIEW token_metrics_hourly AS
SELECT
token_address,
time_bucket('1 hour', timestamp) as hour,
avg(price_usd) as avg_price,
sum(volume_24h) as total_volume,
count(*) as data_points
FROM token_metrics
GROUP BY token_address, time_bucket('1 hour', timestamp)
WITH DATA;
-- Index creation
CREATE INDEX idx_token_metrics_hour
ON token_metrics_hourly (token_address, hour DESC);
Advanced Configuration
Feature Flags
FEATURE_FLAGS = {
'advanced_analytics': {
'enabled': True,
'min_data_points': 1000,
'confidence_threshold': 0.85
},
'realtime_processing': {
'enabled': True,
'max_latency': 100,
'batch_timeout': 50
},
'custom_models': {
'enabled': True,
'max_model_size': '2GB',
'inference_timeout': 30
}
}
Performance Tuning
System Tuning:
Thread Pool:
min_workers: 4
max_workers: 16
queue_size: 1000
Connection Pool:
min_size: 5
max_size: 20
max_queries: 50000
Cache Configuration:
strategy: 'lru'
ttl: 300
max_size: '2GB'
eviction_policy: 'volatile-lru'
Model Optimization:
batch_processing: True
quantization: 'int8'
cuda_enabled: True
tensor_parallelism: 2
Security Considerations
SECURITY_POLICIES = {
'input_validation': {
'sanitization': True,
'max_payload_size': '1MB',
'allowed_content_types': [
'application/json',
'application/x-www-form-urlencoded'
]
},
'rate_limiting': {
'window_size': 60,
'max_requests': 100,
'strategy': 'sliding_window'
},
'authentication': {
'token_expiration': 3600,
'refresh_window': 300,
'max_failed_attempts': 5
}
}
The system supports extensive customization and optimization while maintaining strict security and performance standards.
Last updated