5. Score Aggregation Framework

Metrics Computation Systems

The Score Aggregation Framework implements sophisticated algorithms for combining multiple analysis vectors into comprehensive risk metrics. The system utilizes weighted probabilistic models for score aggregation and risk assessment.

Scoring Configuration

WEIGHT_CONFIG = {
    'chain_analysis': 0.30,
    'sentiment': 0.25,
    'temporal': 0.25,
    'whale': 0.20
}

RISK_THRESHOLDS = {
    'low': 0.25,
    'medium': 0.50,
    'high': 0.75,
    'critical': 0.90
}

Implementation Details

class MetricCalculator:
    def __init__(
        self,
        update_interval: int = 60,
        metric_weights: Optional[Dict[str, float]] = None
    ):
        self.update_interval = update_interval
        self.metric_weights = metric_weights or {
            'chain': 0.4,
            'sentiment': 0.3,
            'market': 0.3
        }
        
        self.metric_history = defaultdict(list)

    async def calculate_metrics(
        self,
        token_address: str,
        chain_data: Dict,
        sentiment_data: Dict,
        market_data: Dict
    ) -> AggregatedMetrics:
        """Calculate aggregated metrics from multiple sources."""

Risk Assessment Mechanisms

The system implements sophisticated risk scoring algorithms:

RISK_SCORING = {
    'confidence_threshold': 0.7,
    'min_data_points': 30,
    'time_decay_factor': 0.95,
    'volatility_impact': 0.3
}

Score Calculation

async def _calculate_composite_score(
    self,
    chain_metrics: Dict[str, float],
    sentiment_metrics: Dict[str, float],
    market_metrics: Dict[str, float]
) -> float:
    """Calculate composite score from all metrics."""
    scores = {
        'chain': np.mean(list(chain_metrics.values())),
        'sentiment': np.mean(list(sentiment_metrics.values())),
        'market': np.mean(list(market_metrics.values()))
    }
    
    composite = sum(
        scores[key] * self.metric_weights[key]
        for key in scores
    )
    
    return float(composite)

Index Generation Pipeline

Configuration Parameters

INDEX_CONFIG = {
    'update_interval': 300,  # 5 minutes
    'smoothing_factor': 0.1,
    'history_length': 1440  # 24 hours
}

Implementation Example

class IndexGenerator:
    def __init__(
        self,
        smoothing_window: str = '6h',
        update_frequency: str = '5min'
    ):
        self.historical_data = pd.DataFrame({
            'timestamp': pd.date_range(
                start='2024-01-01',
                periods=1000,
                freq='5min'
            ),
            'composite_risk': np.random.random(1000),
            'trading_volume': np.random.random(1000) * 1000000,
            'price_changes': np.random.random(1000) * 0.1 - 0.05
        })

Performance Characteristics

Processing Metrics:
    Score Calculation: <20ms
    Risk Assessment: <50ms
    Index Generation: <100ms
    Update Frequency: 5 minutes

Resource Utilization:
    Memory Usage: ~2GB per instance
    CPU Usage: 30-50% optimal
    Network I/O: 20Mbps sustained

Monitoring Integration

The framework exposes comprehensive metrics:

Prometheus Metrics:
    - score_calculation_duration_seconds
    - risk_assessment_latency
    - index_generation_time
    - data_freshness_lag
    - component_health_status

Alert Configurations:
    - HighLatencyAlert: >100ms processing
    - StaleDataAlert: >5min lag
    - ComponentFailureAlert: health check failure
    - AccuracyDegradationAlert: confidence drop

Data Quality Assurance

QUALITY_THRESHOLDS = {
    'min_confidence': 0.7,
    'min_data_points': 30,
    'max_missing_ratio': 0.1,
    'staleness_threshold': 300  # seconds
}

The system maintains strict data quality standards through automated validation and monitoring mechanisms, ensuring reliable score aggregation and risk assessment.

Last updated